|
新聞詳情
不同流體條件下渦街流量計(jì)的測(cè)量特性研究上海自動(dòng)化儀表有限公司詳細(xì)闡述了渦街流量計(jì)的工作原理,先通過(guò)實(shí)驗(yàn)對(duì)在不同流體條件下的相對(duì)示值誤差進(jìn)行分析,再利用SOLIDWORKSFLOWSIM-ULATION流體計(jì)算軟件對(duì)渦街流量計(jì)進(jìn)行相應(yīng)的流場(chǎng)分析等。 0、引言 Roshko于1954年首次提出用卡門(mén)渦街現(xiàn)象進(jìn)行流量測(cè)量,期間經(jīng)過(guò)很多學(xué)者的實(shí)驗(yàn)研究和理論分析,逐漸發(fā)展成工業(yè)實(shí)踐中使用的智能渦街流量計(jì);自20世紀(jì)60年代末開(kāi)始研制以來(lái),渦街流量計(jì)發(fā)展非常迅速,可適用于液體、氣體、蒸汽,是一種比較先進(jìn)、理想的流量?jī)x表.本文將先通過(guò)實(shí)驗(yàn)對(duì)在不同流體條件下的相對(duì)示值誤差進(jìn)行分析,再利用SOLIDWORKSFLOWSIMU-LATION流體計(jì)算軟件對(duì)渦街流量計(jì)進(jìn)行相應(yīng)的流場(chǎng)分析等。 1渦街流量計(jì)結(jié)構(gòu)及流量測(cè)量原理 1.1渦街流量計(jì)結(jié)構(gòu) 旋渦發(fā)生體(阻流件)是渦街流量計(jì)的核心部件,它的主要功能是把三維的流體變成二維的旋渦流;其結(jié)構(gòu)形狀非?;镜氖菆A柱型、三角柱型和矩形柱,其他的形狀皆為這些基型的變形?,F(xiàn)在經(jīng)過(guò)大量的實(shí)驗(yàn)和現(xiàn)場(chǎng)使用,非常為流行的是三角柱和三角柱的變形梯形柱[7](如圖1所示),結(jié)構(gòu)參數(shù)之間的關(guān)系一般存在d/D=0.2~0.3、c/b=0.1~0.2、b/d=1~1.5、θ=15°~65°;[8]其優(yōu)點(diǎn)是能產(chǎn)生規(guī)律較好的渦街、斯特勞哈爾數(shù)Sr線(xiàn)性度較高。 1.2測(cè)量原理 渦街流量計(jì)利用卡門(mén)渦街原理,即流體流經(jīng)流量計(jì)時(shí),在旋渦發(fā)生體下游兩側(cè)交替地分離釋放出兩列有規(guī)律的交錯(cuò)排列的旋渦(如圖2所示),在一定雷諾數(shù)范圍內(nèi),該旋渦的頻率與發(fā)生體、管道的幾何尺寸有關(guān),旋渦的頻率正比于流量,此頻率可由探頭檢出。 當(dāng)渦街穩(wěn)定時(shí),旋渦釋放頻率f與流經(jīng)旋渦發(fā)生體兩側(cè)的平均流速u(mài)之間的關(guān)系可表示為:式中:f———旋渦頻率,Hz;Sr———斯特勞哈爾數(shù),雷諾數(shù)Re在3×102~1.5×105的范圍內(nèi),Sr———常數(shù);u———旋渦發(fā)生體兩側(cè)流體的平均流速,m/s;d———旋渦發(fā)生體迎流面的寬度(如圖1所示),m。 設(shè)測(cè)量管內(nèi)徑為D(如圖2所示),發(fā)生體兩側(cè)弓形流通面積之和與測(cè)量管的橫截面積之比為m,則:根據(jù)流體連續(xù)性方程:v=u·m(3)式中:v———測(cè)量管內(nèi)流體的平均流速,m/s。 將式(3)代入式(1),得: 設(shè)測(cè)量管內(nèi)的瞬時(shí)體積流量為qv,m3/s;則: 因此,對(duì)確定的測(cè)量管內(nèi)徑D和旋渦發(fā)生體迎流面寬度d,流體的瞬時(shí)體積流量qv與旋渦頻率f成正比;只要測(cè)得旋渦頻率f,就可測(cè)量出體積流量qv的值。 2實(shí)驗(yàn) 2.1實(shí)驗(yàn)材料 本文實(shí)驗(yàn)對(duì)象為江蘇杰創(chuàng)科技有限公司生產(chǎn)的DN100、編號(hào)為JC180335的三角柱型渦街流量計(jì),流量范圍是(0.0~100.0)m3/h,1.5級(jí),實(shí)體結(jié)構(gòu)及主要參數(shù)。 使用的標(biāo)準(zhǔn)裝置為標(biāo)準(zhǔn)表法水流量標(biāo)準(zhǔn)裝置,0.2級(jí),流量范圍(5~2200)m3/h、適用口徑DN(50~500)mm,實(shí)驗(yàn)管道為DN100,數(shù)據(jù)輸出模式選擇(4~20)mA電流輸出;如圖4所示進(jìn)行渦街流量計(jì)現(xiàn)場(chǎng)實(shí)驗(yàn),前后直管段滿(mǎn)足測(cè)量要求。 2.2實(shí)驗(yàn)方法 經(jīng)現(xiàn)場(chǎng)實(shí)驗(yàn)發(fā)現(xiàn):當(dāng)管道內(nèi)設(shè)定流量低于10m3/h時(shí),渦街流量計(jì)的電流輸出為0mA(表頭顯示0.000m3/h);調(diào)節(jié)閥門(mén)開(kāi)度,逐步增大流量點(diǎn)至13m3/h時(shí),數(shù)據(jù)輸出正常。根據(jù)研究對(duì)象的流量范圍,選取13m3/h、20m3/h、50m3/h、80m3/h等為流量參數(shù)采用標(biāo)準(zhǔn)表法在不同介質(zhì)壓力下進(jìn)行相對(duì)示值誤差計(jì)算。 3實(shí)驗(yàn)結(jié)果及分析 3.1調(diào)節(jié)閥門(mén)的開(kāi)度及泵的頻率使得管道流量達(dá)到被檢渦街流量計(jì)的有效下限值13m3/h,記錄下此時(shí)渦街流量計(jì)的輸出值(共計(jì)50個(gè)數(shù)據(jù));如圖5所示,數(shù)據(jù)不穩(wěn)定,非常小值、非常大值分別為8.108m3/h、12.774m3/h,經(jīng)格拉布斯準(zhǔn)則[12]判定均不是異常值;經(jīng)計(jì)算得到相對(duì)示值誤差E=-14.44%,標(biāo)準(zhǔn)偏差σ=8.05%。 導(dǎo)致流量輸出不穩(wěn)定,造成相對(duì)示值誤差及重復(fù)性偏大的原因可能是:液體介質(zhì)流量過(guò)低(下限有效流量),致使雷諾數(shù)偏低;根據(jù)文獻(xiàn)[3]得知:20℃水的動(dòng)力粘度μ=1.003×10-3Pa·s、密度ρ=998.2kg·m-3,此時(shí)13m3/h對(duì)應(yīng)的來(lái)流速度v=0.46m/s,流場(chǎng)的特征直徑D=0.1m;根據(jù)式(6)得: 由文獻(xiàn)[9]可知:對(duì)于多數(shù)渦街流量計(jì),雷諾數(shù)Re在2×104~7×106范圍內(nèi)(可見(jiàn)Re=4.6×104在下限附近)Sr可看為常數(shù),可保證測(cè)量的準(zhǔn)確度;超出該范圍,Sr將隨Re的降低或升高而變化,渦街流量計(jì)將出現(xiàn)非線(xiàn)性,從而導(dǎo)致渦街流量計(jì)的準(zhǔn)確度會(huì)降低。另外,管道內(nèi)介質(zhì)的壓力也可能會(huì)造成渦街流量計(jì)的準(zhǔn)確度降低,在后續(xù)實(shí)驗(yàn)中,將進(jìn)行同一流量點(diǎn)、不同介質(zhì)壓力下進(jìn)行相對(duì)示值誤差實(shí)驗(yàn)。 3.2調(diào)節(jié)閥門(mén)的開(kāi)度及泵的頻率使得管道流量達(dá) 到設(shè)定的流量值20m3/h、50m3/h、80m3/h,調(diào)節(jié)管道內(nèi)的介質(zhì)壓力;記錄不同管道介質(zhì)壓力下渦街流量計(jì)的輸出值,并進(jìn)行相對(duì)示值誤差計(jì)算。 如圖6所示,相同流量點(diǎn)、不同介質(zhì)壓力下的相對(duì)示值誤差不同,且隨著壓力的增大,相對(duì)示值誤差均有不同程度上升的趨勢(shì),中、小流量點(diǎn)下表現(xiàn)得尤為明顯;相對(duì)應(yīng)的大流量點(diǎn)下的相對(duì)示值誤差對(duì)壓力變化略顯得不太敏感。整體來(lái)說(shuō),分界流量0.2qmax以上各流量點(diǎn)對(duì)應(yīng)的相對(duì)示值誤差還是呈線(xiàn)性的,可以通過(guò)調(diào)節(jié)流量傳感器系數(shù)(Sensor-Factor)進(jìn)行校準(zhǔn);另外在今后進(jìn)行渦街流量計(jì)中、小流量檢測(cè)時(shí)盡可能的增大管道內(nèi)介質(zhì)的壓力等。接下來(lái)進(jìn)行渦街流量計(jì)三維建模及流場(chǎng)仿真分析,進(jìn)一步研究不同流體條件下渦街的工作原理等。 4CFD仿真分析與探討 4.1建立模型 應(yīng)用CAD軟件SolidWorks依據(jù)上述渦街流量計(jì)的內(nèi)部實(shí)際尺寸建立計(jì)算區(qū)域模型,為了盡可能降低網(wǎng)格數(shù)、提高仿真計(jì)算效率,采用根據(jù)前2D后5D的直管段安裝要求建模。 4.2網(wǎng)格劃分 選擇自動(dòng)網(wǎng)格劃分,初始網(wǎng)格劃分級(jí)別選擇6,非常小縫隙尺寸即為旋渦發(fā)生體與探頭之間的距離5mm,其余選擇默認(rèn)狀態(tài),運(yùn)行網(wǎng)格求解得到模型總的流體網(wǎng)格數(shù)為197894,其中,接觸固體的流體網(wǎng)格數(shù)為59948。 4.3求解設(shè)置 分析類(lèi)型選擇內(nèi)部流場(chǎng)分析,并排除不具備流動(dòng)條件的腔;重力加速度方向選擇y軸負(fù)方向、g=9.81m/s2;渦街流量計(jì)的內(nèi)部流場(chǎng)為非定常流,選擇瞬態(tài)分析,設(shè)定仿真時(shí)間10s、保存間隔周期0.05s;流體介質(zhì)選擇水,其密度為998.2kg/m3、運(yùn)動(dòng)粘度為1.003×10-3Pa·s;流動(dòng)類(lèi)型為層流和湍流;初始條件x方向速度為0.46m/s(即13m3/h),湍流參數(shù)選擇湍流強(qiáng)度和湍流長(zhǎng)度,其中湍流的定義方法選擇湍流強(qiáng)度I[13](見(jiàn)式7)和湍流長(zhǎng)度I[14](見(jiàn)式8),經(jīng)計(jì)算當(dāng)v=0.46m/s時(shí)湍流強(qiáng)度I=4.18%、I=0.007mm。 選擇速度、壓力及力作為全局目標(biāo),選取探頭表面一側(cè)(z正方向)表面受到的力為表面目標(biāo),然后運(yùn)行求解。 通過(guò)分析表1數(shù)據(jù)得出同一流量點(diǎn)下,管道內(nèi)介質(zhì)壓力不同,探頭受力是不一樣的,且在管道介質(zhì)壓力小于0.1MPa時(shí),各流量點(diǎn)下隨著管道壓力的增大,探頭受力變化趨勢(shì)一致,均是逐漸減小,如圖9所示;以流量點(diǎn)50m3/h為例,繼續(xù)增大管道內(nèi)介質(zhì)壓力,發(fā)現(xiàn)在管道壓力大于0.1MPa的條件下,探頭受力F隨流量點(diǎn)的增大呈增大趨勢(shì)。 從渦街流量的工作原理和仿真數(shù)據(jù)知道,探頭的受力是周期性的,隨著流量點(diǎn)的增大探頭受力周期呈減小趨勢(shì);且周期的大小與管道內(nèi)的介質(zhì)壓力無(wú)關(guān),只與介質(zhì)流量的大小有關(guān),通過(guò)周期的倒數(shù)可得到不同流量點(diǎn)下的探頭受力的頻率大小,即探頭受力的頻率與介質(zhì)流量呈正相關(guān)。結(jié)合式(9)可計(jì)算得到基于探頭受力條件下的脈沖當(dāng)量,結(jié)果發(fā)現(xiàn)脈沖當(dāng)量(60個(gè)/L)是一個(gè)定值,與管道壓力、介質(zhì)流量無(wú)關(guān)等。 式中:脈沖當(dāng)量單位為個(gè)/L;頻率的單位為Hz;流量的單位為m3/h。 4.4仿真結(jié)果與分析 在實(shí)際的檢校驗(yàn)工作,同一個(gè)直管段只有一個(gè)入口和一個(gè)出口,則可認(rèn)為入口流量與出口流量相當(dāng),為了研究介質(zhì)壓力的單因素變化對(duì)探頭受力的影響,在仿真的初始條件分別根據(jù)實(shí)際數(shù)據(jù)設(shè)置出口速度和入口靜壓力。 5結(jié)論與探討 5.1結(jié)論 本文闡述了渦街流量計(jì)的工作原理。通過(guò)實(shí)際實(shí)驗(yàn)得到渦街流量計(jì)存在有效下限值(分界流量以下),在該流量值下存在較大相對(duì)示值誤差,且重復(fù)性不佳;在分界流量以上,相同流量點(diǎn)隨著壓力的增大,相對(duì)示值誤差均有不同程度上升的趨勢(shì),中、小流量點(diǎn)下表現(xiàn)得尤為明顯,大流量點(diǎn)下的相對(duì)示值誤差對(duì)壓力變化略顯得不太敏感;整體來(lái)說(shuō),分界流量0.2qmax以上各流量點(diǎn)對(duì)應(yīng)的相對(duì)示值誤差還是呈線(xiàn)性的。通過(guò)仿真模擬發(fā)現(xiàn)當(dāng)管道介質(zhì)壓力小于0.1MPa時(shí),隨著介質(zhì)壓力的增大探頭受力變化趨勢(shì)一致,均是逐漸減小,當(dāng)管道壓力大于0.1MPa的條件下,探頭受力F隨流量點(diǎn)的增大呈增大趨勢(shì);另外,探頭的受力是周期性的,隨著流量點(diǎn)的增大探頭受力周期呈減小趨勢(shì),只與介質(zhì)流量的大小有關(guān),與管道內(nèi)的介質(zhì)壓力無(wú)關(guān),通過(guò)周期的倒數(shù)可得到不同流量點(diǎn)下的探頭受力的頻率大小,即探頭受力的頻率與介質(zhì)流量呈正相關(guān)。 5.2探討 通過(guò)實(shí)驗(yàn)及仿真模擬引發(fā)一些思考,也是今后進(jìn)一步研究渦街流量計(jì)的方向: (1)渦街流量計(jì)工作原理中提到的旋渦頻率與本文中仿真得到探頭受力頻率之間存在什么樣的關(guān)系。 (2)由仿真模擬,根據(jù)探頭的受力頻率換算得到恒定的脈沖當(dāng)量(60個(gè)/L)與實(shí)際工作條件下脈沖當(dāng)量是否一致。 (3)卡門(mén)渦街的形成與雷諾數(shù)有很大的關(guān)系,上海自動(dòng)化儀表有限公司根據(jù)雷諾數(shù)計(jì)算公式,其值與管道介質(zhì)壓力無(wú)關(guān),與仿真得到的探頭受力大小與管道介質(zhì)壓力存在強(qiáng)的相關(guān)性是否矛盾。 |